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Extended Abstract : 
 
1. Introduction 

 
A Scalable Distributed Data Structure (SDDS) stores application data in a file transparently distributed over 

the nodes of a multi-computer, [LNS93]. The file consists of records identified each by a primary or a k-d key. 
Each storage node,  the server node of the SDDS, stores the  record in a bucket. The number of storage nodes, 
dynamically scales with the file size through the splits of the overloaded buckets. A split typically evacuates half 
of a bucket to a new bucket at a new server appended to the SDDS.   

The application interfaces only the SDDS client component on its node. The record address calculus at the 
client from the key value  does not require  access to any central repository. This could otherwise constitute a hot 
spot. The client uses its image of the file structure. The image can be inaccurate, as SDDS splits are not posted to 
the clients (clients can be unavailable when spits occur, or mobile…). The client may send the key search or the 
insert with the record to an incorrect server, or may simply invoke a multicast message. Each SDDS server has 
therefore a built-in algorithm to check whether its address is the correct one for the incoming query. If not, and 
the query is a unicast message, it forwards it to a server  which could be the correct one. The new server iterates 
the same procedure, as it may still be the incorrect one.  Ultimately, possibly only after a few hops, the query 
reaches the correct server. The client gets then the Image Adjustment Message (IAM). The IAM content allows 
the client to adjust its image, at least so that the same error does not occur twice.   

Many SDDS schemes are now known. The LH* schemes for  the scalable distributed  hash partitioning, and 
the RP* schemes for the scalable distributed  range partitioning were the most studied [LNS93] [LNS94]. It was 
shown that they provide excellent scalability. In practice, only the number of available nodes and their storage 
limit the file size. The LH* or RP* file can thus potentially scale to  the magnitudes impossible in practice for 
more traditional data structures.  

The SDDS-2000 prototype offers these schemes for the data storage in the distributed RAM of a network 
multi-computer, i.e., a high-speed network of popular computers [AWD01]. Its performance analysis has shown 
its capability to handle million-record SDDS files with key search or record insert times of 0.1 – 0.3 ms.  These 
times are potentially a hundred time faster than those to traditional disk files.  

An SDDS file shared by several applications needs a concurrency control. A deadlock free scheme is 
preferable, as usual in a distributed system. The concept of value date allows for such schemes, [WLH88]. A 
value date V for a transaction T is a time limit assigned so that T must terminate at most by V. Every transaction 
should get a different value date. If two transactions conflict, their value dates can be compared. If the 
comparison shows that a deadlock could occur, one of the transactions is aborted and restarted later with a new 
V, chosen to avoid the conflict. This is the principle of the VDAS schema in [WLH88] and [WLH89]. 

Two cases of SDDS data sharing appear in practice. First, a file can be private to the applications at the same 
client only.  We refer to it as a single (SDDS) client case. More generally, a file can be shared by multiple SDDS 
clients. This is the multiple (SDDS) client case.   

The single client case allows for the concurrency and transaction management only at the client. The multiple 
clients require the concurrency control also at the servers. The former property is attractive, as it allows for the 
coupling with any known centralized scheme. However the performance of the coupling have to be determined. 
The overhead of the any concurrency management scheme affects the performance of the SDDS, perhaps 
unacceptably.  

   Below, we present the concurrency manager for the single client case, coupling VDAS scheme with SDDS-
2000. The system required the study of various issues. One is the strategy for the calculus of the value dates for 
the VDAS scheme. This choice influences the ratio of the restarted transactions and the resulting overhead. 
Some transactions may in particular potentially restart several times. This creates the potential for the livelock 
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that we should prevent. The whole overhead depends on the load of the system, on the length of the transactions 
involved etc.  We thus had to find out what performance, especially the throughput, our implementation could 
finally offer in practice.  

We first describe our design choices. We recall the VDAS scheme and show how we completed it to avoid 
the livelock. We then present our method for the value date determination. Next, we analyze the system 
performance. For this purpose, we carry the simulations of various transactions entering our manager. The 
results prove the effectiveness  of our scheme. Only a fraction of transactions restarts, and a few times only, 
leading to an efficient throughput.  

Our results are of importance beyond their application to an SDDS. Under the name of transactions with 
deadlines, value dates have been extensively studied for real-time databases. We are aware of theoretical 
analysis only. Our scheme is the first implemented to the best of our knowledge. 

 Section 2 presents our concurrency management. Section 3 discusses the performance. Section 4 concludes 
the study.  

 

2. Concurrency management 

2.1. Basic VDAS scheme 
A VDAS-transaction is basically any ACID transaction provided with the value date. Other non-atomic 

transaction models can be applied as well, e.g., the flexible transaction model [RK95] [WLH89].  The value date 
is computed by the application, or the transaction manager. Obviously, it has to be far enough to allow the 
transaction to complete. How it is computed however is not the part of the VDAS schema. The only condition is 
that no two concurrent VDAS-transactions ever  enter with the same value date.  

To manipulate (read or write) a data item a VDAS-transaction T has to stamp it with its value date. The data 
that could be stamped by T behaves as it was locked by T in the usual sense, until T terminates with a commit or 
abort. The lock can be considered exclusive or shared. It is granted to T if the data item does not already carry 
another lock (value date).  

In the latter case two VDAS-transactions conflict. Let D be the item, let T1 be the transaction with value date 
V1 that already locked D, and let T2 with V2 be the  one that requests D. The VDAS conflict resolution rule is as 
follows:  
 
(1)    if V2 > V1, T2 waits else abort and restart either T1 or T2 with new V.  
 

The deadlock avoidance is proven in [WLH88]. In short, T1 and T2 never deadlock since only T2 can wait. 
The choice of the abort and restart victim, as well as of its new value date are not the parts of the VDAS scheme. 
These are nevertheless very important choices. A naïve approach, such as “always abort T1” may lead to a 
livelock. If V depends essentially on the duration of T, and T1 is a very long transaction while most of others are 
very short, and come randomly with the rate much shorter than T1 duration, T1 may end up being aborted 
systematically.  

The waiting time imposed by rule (1) to T2 may also potentially cause it to reach V2 without the completion 
and thus get aborted anyhow. T2 restarts then with a new value date V2

’ > V2. The restart clearly does not 
guarantee the completion by V2

’. Notice finally that transactions with value dates cannot deadlock even without 
rule (1). Any interlock lasts  only until the smallest value date of the transactions involved in it. 

The transaction management is beyond the scope of VDAS scheme and of our manager we report on. Notice 
nevertheless that  VDAS scheme behaves for ACID transactions as the most popular strict two-phase locking 
(2PL) schema. It thus guarantees the serializability of the VDAS-transactions.   

In our case, the granularity of locking is basically an SDDS record. However, VDAS scheme works for any 
granularity. In our single-client case, one-phase commit (1 PC) suffices.  In general, one can apply also other 
popular commit protocols, e.g. the 2 PC. For transaction schemes beyond ACID, e.g., for the flexible 
transactions, VDAS allows for new types of commit. The implicit commit by value date is especially promising. 
The commit process does not require any specific message from the coordinator, if no server requests an abort 
before the value date. This is an important advantage over 2 PC for a larger number of participants, e.g., SDDS 
servers in the multiple client case.  

 

2.2. Priority based VDAS schema   
To avoid the livelock  and more generally multiple restarts of any transaction, we have completed the basic 
VDAS scheme with the  priority management.  In our priority based VDAS scheme, every VDAS transaction T 
gets an identifier I when the application submits it. T keeps I  when it restarts, until it completes or  the 
application drops it.  Every T also have some priority p ; 0 ≤ p ≤ P. Every new  T gets p = 0. Then p increases by 

- 2 - 



one with every restart of T, until some given maximal p value P.  It also increases adequately with the ratio of T 
completion (current execution time  / expected execution time until V).  Let again T1 and T2 conflict with 
current priorities p1 and p2 both smaller than P. The new conflict resolution is as follows: 

(2) If V2  > V1 then T2 waits else  
If p1 = p2  then abort and restart T1 else 
Choose for abort and restart T with smaller p. 

A transaction whose priority reaches P since it reached V  restarts with the same priority and longest possible 
value date. All transactions with priority P are furthermore totally serialized on first-in first-out basis.  No 
livelock can occur in this way.  

 

2.3. Value date calculus 
The transaction manager knows for each transaction the estimate of the number of reads and writes it should 

perform. This description is supposed provided by the application or inferred by the transaction manager. The 
concurrency control  manager also dispose of the estimates of time to complete an operation. Let nR and nW  be 
respectively the number of reads and writes, tR  and tW  times to read  or write, and  ε > 0 a real number, e.g., 
ε =0.1 in what follows. The factor ε is a provision for some estimation error and possible waiting time during the 
execution. Then, the manager first estimates the length  L of the transaction to (re)start for m-th time as : 
     L = nR * tR + nW  * tW + 2m ε * (nR * tR + nW  * tW) 

The value date V is then computed as V = L + D,  where D is the current time (date-time)  when first 
operation of T is launched by the manager for the actual execution. The operation use the usual services of 
SDDS-2000 .  

 

3. Performance measurements 
To validate our manager, we have studied  its performance through the simulation of transactions operating 

over the actual  SDDS-2000 system. The simulation consisted in the generation of series we called streams of  
concurrent transactions. The number of transactions per stream was a parameter we have varied. The 
concurrency resulted from the multithreaded launches of operations . The transactions conflicted  randomly on 
predefined set of up to a few  thousand keys to insert into the RP*N file. For the experiments, we had to group 
several SDDS servers of this file at the same machine, as we disposed of a few machines only. Hence the CPU 
bandwidth of each machine had to be shared among the servers, slowing accordingly the response times with 
respect to the normal SDDS case of one server per machine.  

First, as the reference, we have determined performance of the system for a single transaction in the system 
whose number of operations was a parameter. Next, we have generated multiple conflicting transactions. Of 
prime interest to the efficiency of our manager was the quantity of restarts, and especially of multiple restarts. 
Also, we had to know the incidence of the concurrency management on the execution time of a transaction, with 
respect to its execution time determined when the transaction was alone in the system. The characteristic of main 
interest was the efficiency of the conflict resolution. Especially, the ratio of aborts and of multiple restarts. Since 
our goal was the concurrency, our objective was to validate the transaction manager by studying its behaviour 
when a certain number of the transaction model key parameters need to be evaluated : 

    - the transactions length (number of operations) 
    - competition degree ( transactions batch size ). 
The indicators retained to qualify the transaction manager behaviour are : 
   * the conflict rate (abortion rate and locking rate ) 

* number of other attempts 
     * the average time of execution of a transaction 
   - the transaction manager stability study in continuous running of the transaction manager.     
 

3.1- Test  environment 
The measurements were made on three machines having identical configurations, connected to a local 

network of 10Mb/s. One of the machines is used to serve as a client and the two others support. 
The 10 SDDS servers on the basic of 5 servers a machine. 
All measures to be carried out are related to the client (transactions manager).  
We specify that the response time of the servers involved in the transactions operation is included in the 

measures made.   
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3.2- Study of the transaction manager behaviour in a concurrent environment.                
The transaction manager behaviour in a competitive environment was studied in this part. The VDAS 

algorithm and the priorities based extra module behaviours were distinguished in this study.  We want to make 
sure that the VDAS algorithm which is the basis of our concurrency control, plays the main role. The priority 
based module hushes the execution of the small number of potential livelock transactions and guarantees the 
complete processing of any transaction in a limited time. 

 
The experimental procedure consisted in starting series of updating transactions stream of the same lengths 

(10 operations), and gradually changing the stream size. The transactions recording keys were randomly 
generated on a key area between 1 and 1000. 

 
The table below shows the duration of the complete execution of the transaction stream ( Total execution 

time in milliseconds), the number of aborted transactions due to the VDAS algorithm (Nb of VDAS aborts), the 
number of aborted transactions due to the priority based module (Nb of Priority aborts), the number of waiting 
transactions (Nb of  Waiting transactions), and the number conflicting transactions (Nb of Conflicts).  
 
Thus, Nb of Conflicts = Nb of VDAS aborts + Nb of Priority aborts +  Nb of Waiting transactions   

 10 50 100 200 300 400 
Total execution Time (ms) 1261 7811 15662 32602 52438 76425 
Nb of VDAS aborts  4 40 76 159 254 350 
Nb of Priority aborts  0 2 4 0 4 6 
Nb of Waiting transactions 5 69 163 335 484 596 
Nb of Conflicts  9 111 243 494 742 952 

 

Tab1. Measurements of the number of conflicts and execution time of various set of  de transactions 
 
We can compute the different rates using the previous values in  Tab1. : 
Table 2 shows the rate of aborted transactions due to the VDAS algorithm (Rate of VDAS aborts), the rate of 

aborted transactions due to the priority based module (Rate of Priority aborts), the rate of waiting transactions 
(Rate of  Waiting transactions), and the mean execution time per transaction (Execution time per transaction in 
milliseconds). 

 

 10 50 100 200 300 400 Mean values 
Rate of VDAS aborts 44,4% 36,0% 31,3% 32,2% 34,2% 36,8% 35,8%
Rate of Priority aborts  0,0% 1,8% 1,6% 0,0% 0,5% 0,6% 0,8%
Rate of Waits 55,6% 62,2% 67,1% 67,8% 65,2% 62,6% 63,4%
Execution time per 
transaction (ms) 126,1 156,2 156,6 163,0 174,8 191,1 161,3

 

Tab2. Measurements of  conflict rates and  execution time per transaction.  
The latter values can be visualised through this graphical representation. (Fig1) 
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Fig1. Variation of the conflict’s rates according to the stream transaction size. 
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More than 99% of aborts are due to VDAS algorithm and  the expiration of value dates during the transaction 
wait status. 

 
The priority part of the algorithm has a marginal effect in the rate of aborts  But it is necessary to avoid 

livelock. This experimental finding is totally conform to our hypothesises 
 
In this study P=6 and the priorities based extra module is triggered when p>3.  
The maximum value of the priority is 6. Beyond this value, the transaction is forced into the sequential 

execution list. If p is below 3 then complementary module is inhibited.  
 
The influence of the parameter p is dealt with in the complete version of the paper.  Our findings show that 

the rate of VDAS aborts and that of priority aborts are mutually counterbalanced under the variation of p. 
Nevertheless this process does not affect our first conclusions. 

 
To  validate the priority based VDAS algorithm, we measure the number of restarts with a growing size of 

transaction streams. When a transaction aborts we push it in a list in order to restart it later. The execution of the 
transaction stream is finished when all the transactions has been completed. 
 
The results obtained are resumed in the table bellow (Tab3.)  : 
 

 1 time 2 times 3 times 4 times 5 times 6 times 
10 4 0 0 0 0 0 
50 19 7 3 0 0 0 

100 41 12 5 0 0 0 
200 106 25 1 0 0 0 
300 194 22 4 2 0 0 

Stream  size 

400 262 24 10 4 0 0 
 

Tab3. variation of the number of restarted transactions according to the frequency of restart for 
                  various stream size . 
 
This histogram  represents  the values in the precedent  table (Tab3.)  : 
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Fig2. variation of the number of restarted transactions according to the frequency of restart for 
various stream size . 
 

Our findings show the effectiveness of the priority based module in the processing  of the potential livelock 
transactions. No one transaction has been restarted more than four times. Hence none of them is forced in the 
sequential execution list.   
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4. Conclusion 
 
             The concurrent access management protocol based on value dates has the advantages of being interlock 
free, it causes few rejections and therefore provides better performance compared with other existing protocols. 
             The implemented transaction manager ensures that any transaction in operation in the system will be 
satisfactorily carried out at the end of a finite waiting time, and provides extra functionality to minimise the 
chances of livelock and critical failure the VDAS is liable to. To this end, some functionality based on the 
concept of priority associated with each transaction in operation was added. 
             The performance measurements and test carried out showed that with a conflict rate between 8.92 % and 
15.24 % the transaction manager behaves in a stable way and the streams  processing time does not explode until 
streams with a size equalling 400 transactions (full version of the paper). 
              Furthermore, studies carried out not only enabled the transactions manager behaviour to be observed but 
also contributed to fix the values of the different parameters allowing a reasonable response time. 
              Those different achievements later made it possible to more easily face the concurrent access problem 
linked to a truly distributed architecture, what is the SDDS multiple clients / SDDS servers. 
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